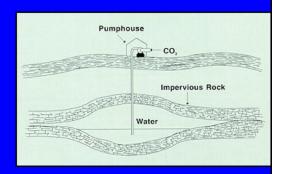

A Sustainable Energy Future for Australia

Dr Mark Diesendorf

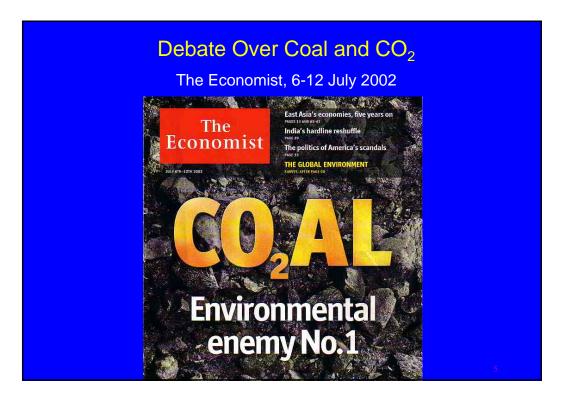
Institute of Environmental Studies University of New South Wales m.diesendorf@unsw.edu.au

Collapse of Larsen B ice shelf, Antarctica

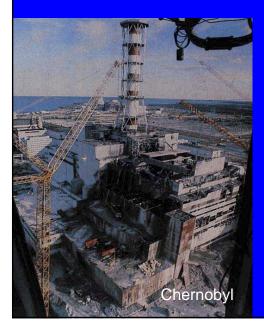

Australian Government finally Acknowledges that there is a Problem

Federal Government's Main 'Solution': Coal Power with Capture & Storage of CO₂

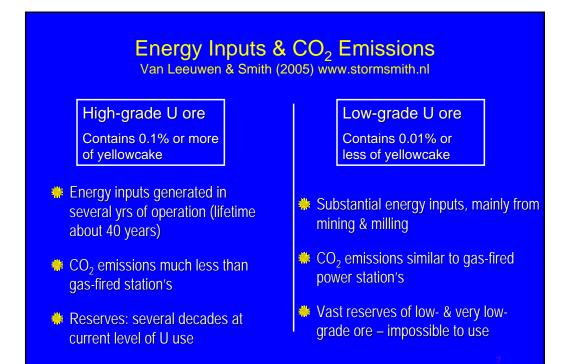
- May not be commercially available for 20 years or more
- Risks of escape of buried gas
- Will cost more than wind power and bioenergy from crop residues


 Necessary and cheaper at NW Shelf gas fields

'Clean Coal': Capture & Sequestration of CO₂


Still has:

- Air and water pollution
- Risks to coal miners
- Land degradation



Federal Govt's Back-up 'Solution': Nuclear Power

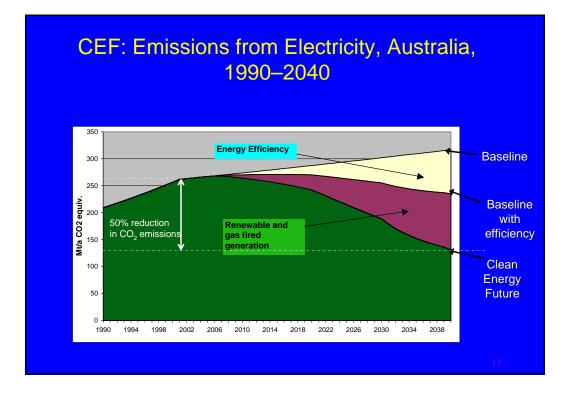
- Proliferation of nuclear weapons
- Superb terrorist target
- Rare but devastating accidents
- Managing high-level wastes
- Emits increasing amounts of CO₂ as uranium ore grade decreases
- More expensive than wind power
- Too slow to build

Brief Q & A on Australian Government's 'Solutions'

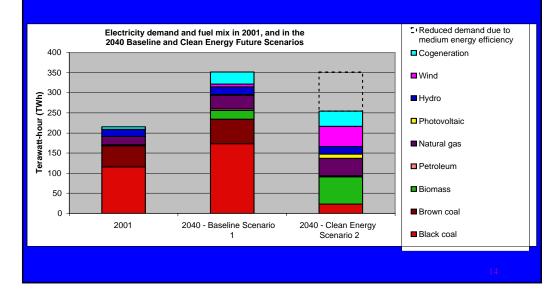
Next: Energy/Greenhouse Scenarios

The Genuine Solution

Sustainable Energy Future for Australia based energy efficiency, renewable energy & natural gas (the cleanest fossil fuel) during the transition

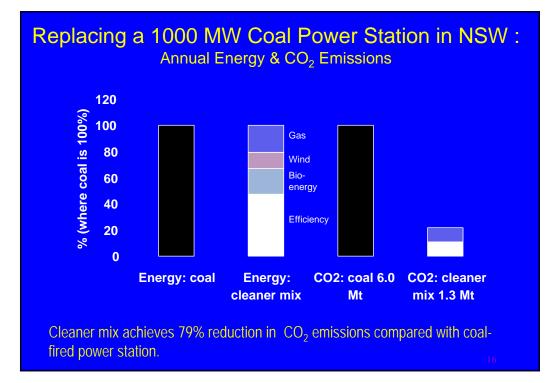


A Clean Energy Future for Australia (2004)


http://wwf.org.au/publications/clean_energy_future_report.pdf

Stationary energy	Electricity (grid-connected & remote); residential heat; industrial heat and engines
Long-term target	Reduction to 50% of 2001 CO_2 emissions by 2040
Technologies	Small changes to existing technologies
Economic growth	Continuing

i.e. Big reduction without major technical breakthroughs!


CEF: Fuel Mix for Electricity in 2001, 2040 Baseline, & 2040 Scenario 2

CEF: Electricity Generation: 2040 Cleaner Electricity Mix

Efficient energy use to reduce demand. There	ו:
Natural gas:	30%
Bioenergy from crop residues & oil mallee:	28%
Wind power:	20%
Coal: (85% now)	9%
Hydro: (8% now)	7%
Solar electricity:	5%

Achieves 78% reduction in CO₂ emissions from electricity

Direct Local Jobs per Unit of Electricity Generated

Source of electricity	Relative number of jobs in Australia
Coal electricity + coal mining	1
Wind power with 50% Australian content	2-3
Bio-electricity with 50% Australian content	Approx. 3.5 (mostly rural)

Allen Consulting's Macroeconomic Model for Australian Business Roundtable on Climate Change

Conservative assumptions:

- 'Early action' 2013; 'late action' 2022
- No unilateral action by Australia
- Efficient energy use underestimated, as in almost all 'top-down' models

Allen Consulting: Results				
Rate of GDP growth (%)	Projected GDP in 2050 (\$ x 10 ¹²)	Emissions reduction 2000–50 (%)		
2.2	2.12	60		
2.1	2.00	60		
1.9	1.84	60		
	Rate of GDP growth (%) 2.2 2.1	Rate of GDP growth (%)Projected GDP in 2050 (\$ x 1012)2.22.122.12.00		

Brief Q & A on Energy/Greenhouse Scenarios

Next: Sustainable Energy Technologies

Energy Efficiency: Residential

- Solar efficient design in new buildings & retrofits
- Insulation of buildings
- Efficient lighting
- Efficient heating & cooling
- Efficient shower heads & taps

Christie Walk, Adelaide City

Energy Supply

In CEF study, biomass supplies 28% electricity in 2040

- Fuels include wheat stubble, sugar cane residues & plantation forest residues.
- Residues & organic wastes cheapest & fastest, but resource limited.
- Price depends on distance that fuel is transported
- Generates baseload power

Burning sawmill & sugar cane residues at Rocky Point, Old

Energy Supply

In CEF study, wind generates 20% of electricity in 2040

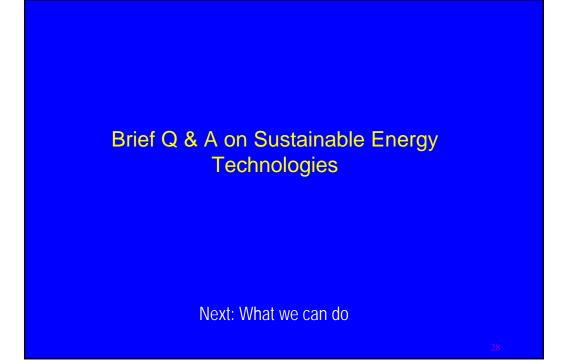
- 20% of electricity achieved in Denmark, 25% by 2010
- Changes to transmission
 network are needed
- Large-scale dispersed wind + gas turbines can substitute for coal in grid = baseload

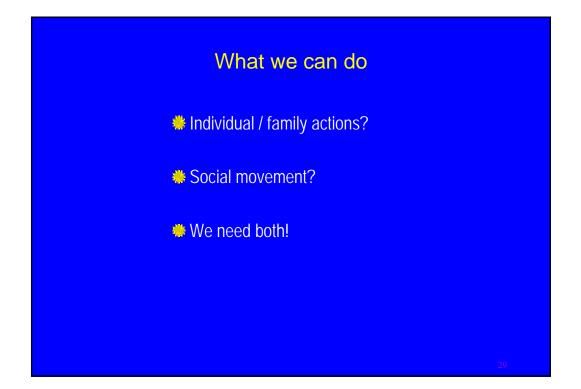
Albany wind farm, W.A.

Large-Scale, Dispersed Wind is not 'Intermittent'

- Single wind turbines are intermittent (they switch on and off frequently in low winds)
- Multiple wind farms, located in different separated locations, are not intermittent. In general, their total output varies slowly.
- At windy sites, about 2700 MW of wind power can substitute for the electricity generation of a 1000 MW coal power station, which can be retired.
- The wind farms can be made as reliable as coal, by adding a little peakload plant, such as gas turbines.
- Since the peakload plant has low capital cost and in operated infrequently, it provides reliability insurance with a low premium.

Additional Baseload Under Development


- Solar thermal electricity with thermal storage in water, rock bed or thermo-chemical system
- Hot dry rock geothermal power
- Will be ready before, and economically competitive with, before 'Generation 4' nuclear power stations



- Combined cycle power stations: 30% of electricity in CEF in 2040
- Cogeneration of electricity and heat, especially in industrial & commercial sectors
- Back-up for solar hot water, solar space heating & solar thermal electricity
- Back-up for wind power with peak-load gas turbines

Additional Key State Govt Policies Needed

- Ban all new conventional coal-fired power stations
- Extend BASIX to existing residential & commercial buildings
- Foster solar for hot water, solar electricity & solar clothes drying
- Planning: ensure locations of major travel destinations are supplied by public transport, preferably rail
- Improve urban public transport, especially heavy & light rail, and integrate with urban planning
- Stop building major roads; limit parking places in urban centres & subcentres

Brief Q & A on Policies and Strategies

Conclusion

- Human-induced climate change appears to be accelerating
- 'Clean' coal may not be ready for 20 years or more
- Wullear power is not a solution
- Efficient energy use, some types of renewable energy and gas (as a transitional fuel) are ready now
- Federal Government is delaying strong action (especially carbon pricing) until its preferred technologies are ready
- Individual action is necessary, but not sufficient.
- We need a social movement to generate the political will in governments and Oppositions (Federal & State).

Further Reading

Report: Saddler, Diesendorf & Denniss (2004) *A Clean Energy Future for Australia*

Book: Diesendorf (2007, in press) *Greenhouse Solutions with Sustainable Energy*